A limited microbial consortium is responsible for extended bioreduction of uranium in a contaminated aquifer.

نویسندگان

  • Thomas M Gihring
  • Gengxin Zhang
  • Craig C Brandt
  • Scott C Brooks
  • James H Campbell
  • Susan Carroll
  • Craig S Criddle
  • Stefan J Green
  • Phil Jardine
  • Joel E Kostka
  • Kenneth Lowe
  • Tonia L Mehlhorn
  • Will Overholt
  • David B Watson
  • Zamin Yang
  • Wei-Min Wu
  • Christopher W Schadt
چکیده

Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H(2) production during EVO degradation appeared to stimulate NO(3)(-), Fe(III), U(VI), and SO(4)(2-) reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effects of organic carbon supply rates on uranium mobility in a previously bioreduced contaminated sediment.

Bioreduction-based strategies for remediating uranium (U)-contaminated sediments face the challenge of maintaining the reduced status of U for long times. Because groundwater influxes continuously bring in oxidizing terminal electron acceptors (O2, NO3(-)), it is necessary to continue supplying organic carbon (OC) to maintain the reducing environment after U bioreduction is achieved. We tested ...

متن کامل

Uranium reduction in sediments under diffusion-limited transport of organic carbon.

Costly disposal of uranium (U) contaminated sediments is motivating research on in situ U(VI) reduction to insoluble U(IV) via directly or indirectly microbially mediated pathways. Delivery of organic carbon (OC) into sediments for stimulating U bioreduction is diffusion-limited in less permeable regions of the subsurface. To study OC-based U reduction in diffusion-limited regions, one slightly...

متن کامل

Diesel Degradation and Bioemulsifiers Production Using Bubble-Column with a Microbial Consortium Isolated from Hydrocarbon-Contaminated Soil

Diesel is composed of various toxic compounds that can have a negative influence on the environment including plants, microorganisms, and even groundwater being used for cultivation and human consumption. Diesel oil biodegradation kinetics was investigated using bubble-column reactor and microbial consortium isolated from a hydrocarbons spill site and were assessed<em...

متن کامل

Linking specific heterotrophic bacterial populations to bioreduction of uranium and nitrate in contaminated subsurface sediments by using stable isotope probing.

Shifts in terminal electron-accepting processes during biostimulation of uranium-contaminated sediments were linked to the composition of stimulated microbial populations using DNA-based stable isotope probing. Nitrate reduction preceded U(VI) and Fe(III) reduction in [¹³C]ethanol-amended microcosms. The predominant, active denitrifying microbial groups were identified as members of the Betapro...

متن کامل

In situ bioreduction of technetium and uranium in a nitrate-contaminated aquifer.

The potential to stimulate an indigenous microbial community to reduce a mixture of U(VI) and Tc(VII) in the presence of high (120 mM) initial NO3- co-contamination was evaluated in a shallow unconfined aquifer using a series of single-well, push-pull tests. In the absence of added electron donor, NO3-, Tc(VII), and U(VI) reduction was not detectable. However, in the presence of added ethanol, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 77 17  شماره 

صفحات  -

تاریخ انتشار 2011